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Abstract. Rayleigh-Schrödinger perturbation theory and an improved Wigner-Brillouin perturbation the-
ory has been used to study the cyclotron resonance of the polarons in ternary mixed crystals in the
zero-temperature limit. The interaction between an electron and two branches of longitudinal optical
phonon modes is taken into account in the framework of the random-element-isodisplacement model. The
numerical results for several ternary mixed crystals show that the polaronic cyclotron energy and mass
split successively twice related to the higher and lower branches of longitudinal optical phonon modes
of ternary mixed crystals. A non-linear dependence of the polaronic cyclotron energy and mass on the
composition x is found.

PACS. 71.38.-k Polarons and electron-phonon interactions – 76.40.+b Diamagnetic and cyclotron
resonances – 73.61.Ey III-V semiconductors

1 Introduction

Ternary mixed crystal (TMC) materials are of great im-
portance for the modern electronics. Their properties may
be varied over a wide range by changing the composi-
tion of the mixed crystal. Some of the most important
physical properties of the systems related to their lattice
vibration and electron-phonon (e-p) interaction. Quite a
lot of experimental and theoretical studies on the lat-
tice dynamics and the e-p coupling in TMCs have been
done [1–10]. The properties of the lattice vibration in
a TMC are more complicated than those in a binary
crystal because of their alloy nature. So-called one-mode,
two mode and other mixture characteristics of optical
phonon modes were observed and analyzed [1–3]. Some
authors have used the random-element-isodisplacement
(REI) model and its modified model called the modified
random-element-isodisplacement (MREI) model [5,6] to
discuss successfully the mode behavior of the lattice vi-
bration in TMCs. One of the authors and his collabora-
tor have improved the previous work and correctly de-
rived the canonical modes of the optical vibration and
a new Fröhlich-like e-p coupling Hamiltonian in a recent
work [10]. The calculated mode behavior is in agreement
with the previous experimental observations [1].

Cyclotron resonance (CR) measurement is an impor-
tant method to investigate both the characteristics of elec-
trons and phonons in polar materials. In recent years
much attention has been paid to polaron problems in
an external magnetic field [11–14]. The magnetopolarons
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in binary polar crystals have been widely investigated
by previous authors. The Rayleigh-Schrödinger perturba-
tion theory (RSPT), Wigner-Brillouin perturbation the-
ory (WBPT) and its improvement (IWBPT) are usually
applied to treat the effect of the e-p interaction on Landau
levels [11]. Even a few works have preliminarily studied the
polaron problems in TMCs, the CR of polarons has been
rarely investigated theoretically to our knowledge.

In the present work we study the CR of polarons in
TMCs. In Section 2 we write down the Hamiltonian of an
e-p system in a TMC with an external magnetic field, on
the basis of the new e-p interaction Hamiltonian [10]. The
two-mode characteristic of the lattice vibration in TMCs
is considered in the formulation of the e-p interaction. By
using the RSPT and IWBPT similar to those used by
Lindemann et al. [11] to investigate the CR of polarons
in binary polar crystals the energy levels of polarons in
a TMC are obtained in Section 3. The CR energy and
effective mass of the polaron in a TMC are given and
analyzed in Section 4. The numerical computations for
the polaronic CR energies and masses in several TMCs
are performed and the results are discussed in Section 5.

2 Hamiltonian

We consider an electron in a TMC AxB1−xC. A uniform
magnetic field B along the z direction is applied. Here
x is the composition of A-ion in the TMC. As is well
known, there are two branches of longitudinal optical (LO)
phonon modes coupling with the electron in the system.
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The Hamiltonian of the e-p system then can be written as

H = He + Hph + He−LO. (1)

For the sake of easiness, we supposed that the band mass
of the electron is isotropic.

The first term in equation (1) is the Hamiltonian of an
electron in a magnetic field described by

He =
1

2mb
(px − eBy)2 +

1
2mb

(
p2

y + p2
z

)
, (2)

where px, py and pz are respectively the x, y and z com-
ponents of the momentum p of the electron. mb is the
electron band-mass and described usually by the follow-
ing linear interpolation model [4,7]

mb = xmbA + (1 − x)mbB . (3)

mbA and mbB refer to the band masses of the electron for
the end-member binary crystals AC and BC respectively.
Furthermore, the Laudau gauge is employed here, i.e., the
vector potential of the magnetic field is taken to be A =
(−By, 0, 0). The second term in equation (1) is the free-
phonon-field Hamiltonian

Hph =
∑
jk

�ωjLa†
jkajk, (4)

where a+
jk and ajk are respectively the creation and anni-

hilation operators of the LO-phonon with frequency ωjL

and wave-vector k. It is to be noted that there are two
branches of LO-phonon modes labeled by the subscript j,
where j = + and – stand for respectively the higher-
and lower-frequency branches of the LO-phonon modes
in the TMC.

The last term in equation (1) describes the interac-
tion between the electron and two branches of LO-phonon
modes given by [10]

He−Lo =
∑
jk

[
G∗

j (k)e−ik·ra†
jk + h.c.

]
. (5)

The e-p coupling function in equation (5) is written as

G∗
j (k) =

g∗j
kV 1/2

, (6)

where

g∗+ =
ie

ε0 + b33

(
�

2ω+L

)1/2 (
1

T11 + 2B1T12 + B2
1T22

)1/2

× (b31 + B1b32) , (7a)

g∗− =
ie

ε0 + b33

(
�

2ω−L

)1/2 (
1

T11 + 2B2T12 + B2
2T22

)1/2

× (b31 + B2b32) . (7b)

In (7a) and (7b), e and ε0 are the electronic charge and
the vacuum dielectric constant respectively. The parame-
ters B1 and B2 are determined as

B1 = −T12b
′
21 + T11

(
b′11 + ω2

+L

)
T11b′12 + T12

(
b′22 + ω2

+L

) , (8a)

B2 = −T12b
′
21 + T11

(
b′11 + ω2

−L

)
T11b′12 + T12

(
b′22 + ω2

−L

) · (8b)

Here T11 − T22 are the elements of the kinetic energy ma-
trix and given by

T11 =
MAx [MC + MB(1 − x)]

µAM
, (9a)

T12 = T21 = −MAMBx(1 − x)√
µAµBM

, (9b)

T22 =
MB(1 − x) (MC + MAx)

µBM
, (9c)

where MA, MB and MC are the masses of ions A, B and C
respectively. M is the effective unit-cell mass of the TMC
written as

M = MC + xMA + (1 − x)MB. (10a)

µA and µB are, respectively, the reduced masses of the
ion-pairs in binary crystals AC and BC given by

µA =
MCMA

MC + MA
and µB =

MCMB

MC + MB
· (10b)

The frequencies of the two branches of LO-phonon modes
ω+L and ω−L in the above equations are determined by

ω2
±L =

1
2

{
− (b′11 + b′22)

2 ±
[
(b′11 − b′22)

2 + 4b′12b
′
21

]1/2
}

.

(11)
The dynamical coefficients b′11 to b′22 and b11 to b33 in the
above equations are given in reference [8] and omitted here
for short.

For the convenience of calculation, we introduce the
ratio of the unperturbed cyclotron frequency ωc = eB/mb

to the frequency of higher-branch LO-phonons ω+L

λ2 = ωc/ω+L = Be/mbω+L (12)

to describe the magnetic field strength and use the so-
called “polaron units” related to the same phonon modes.
All lengths are in units of the polaron radius defined by
rp = (�/2mbω+L)1/2 and energies are in units of the
LO-phonon energy of the higher-frequency branch. Thus
equation (2) is rewritten as following dimensionless form

He =
(

px − 1
2
λ2y

)2

+ p2
y + p2

z. (13)

The corresponding changes are also applied to equa-
tions (4, 5).
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3 Perturbation theory

To investigate the CR of polarons we shall calculate the
energies of n = 0 and n = 1 Landau levels respectively.
For this purpose we employ a perturbation theory similar
to that was used to study the CR of polarons in binary
crystals [11–13].

Firstly, let us consider the n = 0 states by using the
second-order RSPT.

The Hamiltonian (1) can be written as a summation
of two terms

H = H0 + H1. (14)

The first term without involving the e-p interaction

H0 = He + Hph (14a)

is solvable and considered as the unperturbed
Hamiltonian. The second term describes the e-p coupling
energy and can be treated as a perturbation

H1 = He−LO. (14b)

The unperturbed eigenvectors of equation (14) are chosen
as the eigenstates of the free Hamiltonian H0∣∣n, qz

〉∣∣k〉
. (15)

Here |n, qz〉 is the eigenfunction of the electron situated
in the nth Landau level with the wave-vector qz in the
z-direction and

∣∣k〉
=

∏
j

a†
jk1

a†
jk2

...a†
jkN

∣∣0j

〉
(15a)

is the phonon state-vector.
∣∣0j

〉
stands for the non-phonon

state of jth branch of LO-phonons and the vacuum state
of the phonon field is described by

∣∣0j

〉
=

∏
j

∣∣0j

〉
. (15b)

The unperturbed energy levels related to the nth
Landau level and zero phonon state are easily obtained as

E(0)
n =

〈
0
∣∣ 〈n, qz

∣∣H0

∣∣n, qz

〉 ∣∣0〉
=

(
n +

1
2

)
λ2 + q2

z . (16)

The energies of n = 0 states are then given by

E
(0)
0 =

1
2
λ2 + q2

z . (17)

The first-order perturbation correction to the n = 0
states is obviously zero and the second-order perturbation
correction can be calculated by

∆E
(2)
0 =

∞∑
n=0

∑
jk

|〈k| 〈n, qz |H1| 0, qz〉 |0〉|2
DRSPT

0n

, (18)

where
DRSPT

0n = E
(0)
0 −

(
E(0)

n + δj

)
. (19)

and
δj = �ωjL/�ω+L. (20)

δj is the dimensionless phonon energy of the jth branch
of LO phonons.

Since our attention is focused on the CR of polarons,
qz can be put to be zero without loss of the generality.
Substituting (16, 17) and (19) into (18), the second-order
correlation to the n = 0 states is written as

∆E
(2)
0 = −

∑
jk

|Gj(k)|2 exp
[
− (k⊥/λ)2

]

×
∞∑

n=0

(k⊥/λ)2n

n! (nλ2 + δj + k2
z)

, (21)

where k2
⊥ = k2

x + k2
y.

After transforming the last factor in equation (21) to
be an integral

1
nλ2 + δj + k2

z

=
∫ ∞

0

dt exp
[− (

nλ2 + δj + k2
z

)
t
]
, (22)

one can obtain

∆E
(2)
0 = −

∑
j

αj√
π

∫ ∞

0

dt

× exp (−δjt)
1√

t − b
ln

(√
t − b +

√
t√

b

)
, (23)

where
b =

(
1 − e−λ2t

)/
λ2. (23a)

In equation (23) αj is the e-p coupling constant of the jth
branch of LO-phonon modes and defined by [10]

αj =

∣∣gj

∣∣2
4πδ

3/2
j

· (24)

The polaronic energy of the n = 0 Landau level with
the zero-phonon state is finally obtained as

E0 =
1
2
λ2 −

∑
j

αj√
π

∫ ∞

0

dt exp (−δjt)

× 1√
t − b

ln
(√

t − b +
√

t√
b

)
· (25)

Secondly, we calculate the polaronic energies of n = 1
states by the IWBPT.

Now we denote the e-p correction ∆E
(2)
0 of the n = 0

states obtained by PSPT as ∆ERS
0 . It is reasonable for

calculating the excited states (n > 0) to add the e-p en-
ergy shift of the ground state to the free Hamiltonian as
a reference. Thus the unperturbed Hamiltonian becomes

H0 = He + Hph + ∆ERS
0 (26)

and the perturbation term is then written as

H1 = He−LO − ∆ERS
0 . (27)
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The polaronic energy of the n = 1 Landau level then can
be calculated by

E1 = E
(0)
1 + ∆E

(1)
1 + ∆E

(2)
1 , (28)

where
E

(0)
1 =

3
2
λ2 + ∆ERS

0

and the first-order perturbation correction is obtained as

∆E
(1)
1 = −∆ERS

0 .

Thereupon equation (28) is finally becomes

E1 =
3
2
λ2 + ∆E

(2)
1 , (28a)

where the second-order perturbation correction to the en-
ergy is given by

∆E
(2)
1 =

∞∑
n=0

∑
jk

|〈k| 〈n, qz |H1| 1, qz〉 |0〉|2
DIWBPT

1n

(29)

with

DIWBPT
1n =

(
E

(0)
1 + ∆E

(2)
1

)
−

(
E(0)

n + ∆ERS
0 + δj

)
.

(30)
After a straightforward calculation we obtain the fol-

lowing result for the second-order correction to the energy

∆E
(2)
1 = −

∑
jk

4παjδ
3/2
j

k2V
exp

[
− (k⊥/λ)2

]

×
∞∑

n=0

(
n − k2

⊥/λ2
)2 (k⊥/λ)2n−2

n!
[(

n + 1
2

)
λ2 + δj + k2

z − E1

] · (31)

4 CR energy and effective mass

The polaronic transition energy from the n = 0 to 1
Landau levels, which we call as the CR energy of the po-
laron in a TMC is given by

�ω∗
c = E1 − E0, (32)

where ω∗
c is the CR frequency.

The corresponding cyclotron mass is then given by

m∗ =
eB

ω∗
c

=
�ωc

E1 − E0
mb. (33)

It is understood that the two states of the system given
by an electron in the n = 0 Landau level with one LO
phonon of frequency ωc, and only an electron in the n = 1
Landau level without phonons, are originally degenerate.
A weak e-p coupling can remove the degeneracy and splits
the energy level of the system into two. Moreover, the
splitting will appears twice at two different magnetic field
in a TMC system, since there are two branches of the

LO-phonon modes (ω+L and ω−L) interacting with the
electrons in this kind of materials, different from binary
crystals. We now discuss the splitting of the energy level
around the two different LO-frequencies separately. For
ease of representation, we introduce the notation λj de-
fined by

λ2
j = δ−1

j λ2 = ωc/ωjL. (34)

Here we will focus our attention on the calculations around
the magnetic fields of λ2

+ = 1 (�ωc = �ω+L) and λ2
− = 1

(�ωc = �ω−L) respectively, where the splitting may ap-
pear.

4.1 About λ2
+ ≈ 1, namely �ωc ≈ �ω+L

In this region, the transition energy from n = 0 to n = 1
Landau levels closes to the LO-phonon energy of the
higher-frequency branch in the TMC, so that the contri-
bution of the term corresponding to the higher-frequency
branch in the perturbation energy correction (31) becomes
dramatically prominent. This situation is then called the
resonant e-p coupling. Otherwise, the interaction between
the electron and phonons of the lower-frequency branch
(ω−L) can be almost neglected. Moreover, one can also
found that the dominant term in the sum over n in equa-
tion (31) is the term of n = 0, which has a smallest energy
denominator when λ2

+ closes to one. Thereupon, a reason-
able approximation for the second-order correction of the
energy around the level crossing region is

∆E
(2)
1

∼=
∑
k

4πα+

k2V
exp

[
− (k⊥/λ+)2

]
(k⊥/λ+)2

× 1
E1 − (E0 + 1) − k2

z

· (35)

Furthermore, the condition E1 − (E0 + 1) � 1 is also sat-
isfied in this region, so that the main contribution to the
sum over k comes from the wave-vectors of kz = 0. Thus
the equation (35) can be approximately written as

∆E
(2)
1

∼=
√

π

4
α+λ+

E1 − E0 − 1
· (36)

The equation for the energy of the n = 1 Landau level
becomes finally

E1 =
3
2
λ2

+ +
√

π

4
α+λ+

E1 − E0 − 1
· (37)

Solving equation (37) gives two solutions and the energy
level splits into two branches. Hereafter we denote them as
E1,u (upper) and E1,d (down) respectively. The transition
energy, i.e. CR energy of the polaron then can be obtained
as follows

�ω∗
c,l = E1,l − E0, (38)

where l = u, d stand for, respectively, the “upper” and
the “down” energy levels. The polaronic cyclotron masses
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also split up into two branches around the magnetic field
of ωc = ω+L given by

m∗
l

mb
=

�ωc

E1,l − E0
· (39)

To clearly describe the extent of the splitting, we can de-
fine a splitting width of CR energy

∆EC = �ω∗
c,u − �ω∗

c,d, (40)

which will be found sensitive to the e-p coupling strength.

4.2 About λ2
− ≈ 1, namely �ωc ≈ �ω−L

In this region, the resonant e-p coupling appears at the
frequency ω−L and only the interaction between the elec-
tron and phonons of the lower-frequency branch need to
be considered in equation (31). It results in

E1 =
3
2
δ−λ2

− +
√

π

4
α−δ3/2λ−

E1 − E0 − δ
· (41)

The solutions of equation (41) gives another twofold split-
ting of the polaron CR energy around �ωc = �ω−L and
equations (38–40) are also hold.

5 Numerical results and discussion

The numerical computations of the polaronic CR energies
and masses as functions of the composition and the mag-
netic field for several TMC materials are performed. As ex-
amples we illustrate the results for the TMCs AlxGa1−xAs
and GaxIn1−xAs in Figures 1–5. The parameters used in
the numerical computations are listed in Table 1.

Table 1. Optical phonon energies, dielectric constants, and
band-masses of electrons used in the computations. Energy is
measured in meV and mass in the electron rest mass.

Materials �ωTO �ωLO ε0 ε∞ mb a

AlAs [7] 44.88 50.09 10.06 8.16 0.150 5.6611 [16]

GaAs [7] 33.29 36.25 13.18 10.89 0.067 5.6419 [16]

InAs [17] 27.09 30.07 14.61 11.80 0.023 5.6607 [16]

Figures 1 and 2 plot the splitting polaronic cyclotron
energies and masses as functions of magnetic field for the
materials AlxGa1−xAs and GaxIn1−xAs with several com-
position respectively. As was expected, the cyclotron en-
ergy and mass are both twofold splitting around the reso-
nant magnetic fields corresponding to ωc ≈ ω+L(λ2

+ ≈ 1)
and ωc ≈ ω−L(λ2

− ≈ 1) respectively. One branch in the
twofold splitting energy and mass lay above whereas an-
other below the LO-phonon energy and electron band-
mass, respectively, at both λ2

+ = 1 and λ2− = 1. It is
also found that the two branches of splitting polaronic cy-
clotron energies and masses increase with increasing the

Fig. 1. Polaronic cyclotron energies �ω∗
c (a) and cyclotron

masses m∗/mb (b) as functions of λ2
+ and λ2

− for the ternary
mixed crystal AlxGa1−xAs at composition x = 0.4 (solid lines)
and x = 0.8 (dashed lines) respectively.

magnetic field. Moreover, the two curves nearly parallel
to each other in vicinities of the CR frequencies but sepa-
rate obviously when the magnetic field parts from the CR
value. One of the two curves goes up quickly and linearly
with increasing the magnetic field and the other pins to a
certain value close to the CR phonon energy. We have
chosen the CR magnetic field as two values related to
the higher (AlAs-like)- and lower (GaAs-like)-frequency
LO phonon energies respectively: �ω+ = 46.4 meV
(λ2

+ = 1) and �ω− = 31.14 meV (λ2
− = 1) for x = 0.4,

�ω+ = 48.84 meV (λ2
+ = 1) and �ω− = 27.59 meV

(λ2
− = 1) for x = 0.8 in our numerical calculation for TMC

AlxGa1−xAs. The calculated pinning energies are given as
around �ω∗

c = 44 meV for �ω+ and 30 meV for �ω− in the
case of x = 0.4, and around �ω∗

c = 44.5 meV for �ω+ and
27 meV for �ω− in the case of x = 0.8 (see Fig. 1a). For
GaxIn1−xAs system, the CR magnetic field has been cho-
sen as two values related to the higher (GaAs-like)- and
lower (InAs-like)-frequency LO phonon energies respec-
tively: �ω+ = 34.15 meV (λ2

+ = 1) and �ω− = 21.63 meV
(λ2− = 1) for x = 0.47, �ω+ = 35.78 meV (λ2

+ = 1)
and �ω− = 19.7 meV (λ2

− = 1) for x = 0.8 respectively.
The results for the pinning energies are given as around
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Fig. 2. Polaronic cyclotron energies �ω∗
c (a) and cyclotron

masses m∗/mb (b) as functions of λ2
+ and λ2

− for the ternary
mixed crystal GaxIn1−xAs at composition x = 0.47 (solid lines)
and x = 0.8 (dashed lines) respectively.

�ω∗
c = 32.4 meV for �ω+ and 21.2 meV for �ω− in the

case of x = 0.47, and around �ω∗
c = 34 meV for �ω+ and

19.5 meV for �ω− in the case of x = 0.8 (see Fig. 2a).
The splitting and pinning of the cyclotron energy and

mass around the resonant phonon frequency were observed
successfully in binary semiconductors [11,15,16]. The cal-
culated splitting characteristic around the resonance en-
ergy for TMC systems here is similar to that shown in the
previous experiments for binary systems, but one more
splitting of energy and mass is found. Even CR experi-
ments in TMC systems were reported less, the splitting
of cyclotron energy and mass have also been observed
by the phonon-assisted magneto-tunneling experiments in
single and double-barrier heterostructures [18–24]. As ex-
pected, two CR peaks have been found experimentally.
The splitting and pinning values of the CR energy ap-
pear at 44 ∼ 48.5 meV for the AlAs-like LO-phonons and
34.5 ∼ 39 meV for the GaAs-like LO-phonons, respec-
tively, in the AlxGa1−xAs barriers of x = 0.37, 0.4 and 0.8.
The twofold splitting was also found in GaxIn1−xAs bar-
rier tunneling at the values lower than the correspond-
ing CR energies. The theoretical results are in agreement
with the previous experiments. It is understood that the
pinning energy is naturally lower than the corresponding
CR energy due to the polaron effects.

Fig. 3. Polaronic cyclotron energies �ω∗
c as functions of

the composition x at λ2
+ = 1 (solid lines) and λ2

− = 1
(dashed lines) for the ternary mixed crystals: (a) AlxGa1−xAs,
(b) GaxIn1−xAs.

Fig. 4. Polaronic cyclotron masses m∗/mb as functions of
the composition x at λ2

+ = 1 (solid lines) and λ2
− = 1

(dashed lines) for the ternary mixed crystals: (a) AlxGa1−xAs,
(b) GaxIn1−xAs.

To understand the influences of the composition x on
the polaronic cyclotron energies, cyclotron masses and
splitting widths of cyclotron energy, we have also plotted
the curves of the cyclotron energies �ω∗

c , relative cyclotron
masses m∗/mb and splitting widths of cyclotron energy
∆EC as functions of the composition x at λ2

+ = 1 and
λ2
− = 1 for the materials AlxGa1−xAs and GaxIn1−xAs

in Figures 3–5, respectively. The non-linear variations of
the polaronic cyclotron energies and masses with the com-
position x are found for both the TMC AlxGa1−xAs and
GaxIn1−xAs. The non-linearity is easily understood by the
non-linear change of the e-p coupling with the composi-
tion [10]. The phenomena can be explained as that the
two polarization-waves due to the A-C and B-C ion-pairs
disturb by each other.

In summary, we have studied the cyclotron reso-
nance of polarons in ternary mixed crystals by using
Rayleigh-Schrödinger perturbation theory and improved
Wigner-Brillouin perturbation theory. The numerical



Zhi Ping Wang and Xi Xia Liang: Cyclotron resonance of polarons in ternary mixed crystals 271

Fig. 5. Splitting widths of cyclotron energy ∆EC as func-
tions of the composition x at λ2

+ = 1 (solid line) and λ2
− = 1

(dashed line) for the ternary mixed crystals: (a) AlxGa1−xAs,
(b) GaxIn1−xAs.

results for AlxGa1−xAs and GaxIn1−xAs show that the
polaronic cyclotron energy and mass successively splits
twice due to the coupling of the electron with two branches
of longitudinal optical phonon modes. A non-linear depen-
dence of the phonon contributions to the polaronic cy-
clotron energy and mass on the composition x is found.

The work was supported by the National Natural Science Foun-
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